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In this paper, a method for optimal placement of sensors and actuators is presented by using 

new measures of modal controllability and observability defined in a balanced coordinate 

system. The proposed new measures are shown to have a great advantage in practical use when 

they are used as criteria for selecting the locations of sensors and actuators, since the most 

controllable and observable locations can be obtained to be identical. In addition, they are more 

accurate than the measures of Hamdan and Nayfeh in that the effects of the eigenvector norm 

are considered into the magnitude of measures. In simulations, to verify the effectiveness of the 

proposed measures and optimal placement method, the closed-loop response of a simply 

supported flexible beam, in which the number and locations of actuators are determined by 

using the proposed measures and optimal placement method, has been examined and compared 

with the case of Hamdan and Nayfeh's measures. 
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I. I n t r o d u c t i o n  

In general, large space structures (LSS) such as 

a space station and the large solar arrays of a 

solar power station satellite have the characteri- 

stics of a flexible structure by the demands for 

light weight and large size. Hence, large space 

structures that are characterized by their inherent 

na tu res - - in f in i t e  dimension, distributed para- 

meter, low damping, and densely populated 

m o d e s -  and stringent performance requirements 

in space as well have been a topic of major 
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concern (Balas, 1982 ; Hyland et al., 1993 ; Nurre 

et al., 1984; Yam et al., 1987). In large flexible 

structures, there are many vibration modes within 

the frequency band of disturbances and control 

bandwidth. Once they are disturbed, these modes 

are likely to remain excited for a long time 

because of their low natural frequency and small 

damping, which might hamper their missions in 

space. Therefore, to comply with the request of 

vibration suppression, the concept of actively 

controlled large flexible structures with sensors 

and actuators located on the structure is to be 

introduced. 

Generally, a large number of sensors and actua- 

tors are required for the active vibration control 

of large flexible structures. Thus, the problem of 

choosing the appropriate number and locations of 

actuators and sensors is important, since an arbi- 
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trary decision is expected to degrade the system 

performance and directly limit the range of prac- 

tical applications (Junkins and Kim, 1993). In 

choosing the appropriate number and locations of 

sensors and actuators, our aim will be to excite 

the structure with minimum control effort for 

vibration suppression and also minimize the 

sensor signal power for the measurement of a 

given excitation of the structure. Here, the mini- 

mum control and measurement efforts are closely 

related with maximizing the degree of controlla- 

bility and observability of a system, respectively. 

For instance, a poor system in which actuators 

are placed on or near the nodes (or node line) of 

vibration mode requires an excessively large con- 

trol force at best, or uncontrollable at worst. 

Consequently, the optimal placement of actuators 

and sensors to maximize the degrees of con- 

trollability and observability can improve the 

control and estimation performance of a closed- 

loop system. 

A large number of strategies for optimal place- 

ment of 'sensors and actuators have been deve- 

loped based on the concept of controllability and 

observability, which are derived from minimum 

energy consideration. However, the conventional 

controllability/observability test, which presents 

binary information only:  controllable (observa- 

ble) or uncontrollable (unobservable), does not 

provide a graduated measure of how controllable 

or observable a system is. Hence, special interest 

is given to the development of explicit relation- 

ship between the system's controllability(or ob- 

servability) and vibration modes. From this con- 

sideration, there have been several research con- 

tributions of Longman et al. (1982), Moore 

( 1981), and Hamdan and Nayfeh (1989a), which 

are all focused on establishing the quantitative 

measures of controllability and observability. 

Among them, Hamdan and Nayfeh proposed the 

measures of modal controllability and observa- 

bility by introducing the generalized angles be- 

tween two vector spaces : the left eigenvectors and 

the column vectors of input influence matrix for 

modal controllability measure; the right eigen- 

vectors and the row vectors of output measure- 

ment matrix for modal observability measure. 

Hamdan and Nayfeh's measures are most attrac- 

tive and provide us with explicit information on 

each mode controllability and observability. 

2. Modeling of Large Flexible 
Structures 

However, there are two important issues to be 

solved when these measures are used as a criterion 

for the selection of optimal locations of sensors 

and actuators. First, in Hamdan and Nayfeh's 

measures, only the generalized angles between the 

left eigenvectors (right eigenvectors) and the input 

vectors(output vectors) are focused on and the 

norms of two vectors are neglected, even though 

there evidently exist the norms of the left eigen- 

vectors and the input vectors. However, the 

neglected norms must be included for accurate 

measures. For this reason, Choi et al. (1995) 

proposed a novel measure which includes the 

norm of input vectors. However, it is difficult to 

deal with the norms of the eigenvectors since they 

are scaled arbitrarily. Second, even if the most 

controllable set of actuator locations is chosen, 

we can not assure that the collocated set of sensor 

locations is the most observable one. Namely, it is 

difficult to achieve the equally controllable and 

observable location set of actuators and sensors 

by using Hamdan and Nayfeh's measures. 

In this paper, it is shown that these two issues 

can be solved by introducing the balanced coor- 

dinate transformation, based on the facts that 

the measures of controllability and observability 

are variant under a coordinates transformation 

(Aquirre, 1995) and, furthermore, a certain mode 

in balanced coordinate system is equally con- 

trollable and observable. Hence, by using the 

novel measures defined in the balanced coordi- 

nate system, we can obtain the optimal location 

set of sensors and actuators which equally maxi- 

mizes controllability and observability of a sys- 

tem and need not take any pain in considering 

the norms of eigenvectors into the measures. In 

addition, the additional measures are introduced 

for the simple and explicit optimal placement 

method. To evaluate the effectiveness of the pro- 

posed measures and optimal placement method, 
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the closed-loop responses of a simply supported 

uniform flexible beam, in which the number and 

locations of actuators are determined by using the 

proposed measures and optimal placement meth- 

od and the controller is designed by using the left 

eigenstructure assignment scheme (Choi et al., 

1995), are investigated and compared with the 

case of Hamdan and Nayfeh's measures. 

By using an approximation technique such as 

the finite element method, large flexible structures 

which are inherently infinite dimensional and 

distributed parameter system can be modeled as a 

lumped parameter and finite dimensional system. 

To define the model of large flexible structures, 

we consider the second order mechanical vibrat- 

ing systems as follows : 

M~)(t) +DO(t) +Krl(t)---Fu(t), rl(t0)=rl0 (1) 

In Eq. (1), r](t) denotes a displacement vector 

and u (t) is control input vector via point forcing 

actuators. M, D, and K represent the lumped 

mass, damping, and stiffness matrices, respective- 

ly, and F is the input force influence matrix that 

indicates the way the input force acts on a flexible 

structure. Here, we assume that identical actuators 

having equal capability are used, hence only the 

information about actuator's locations is contain- 

ed in F .  

If the state vector is defined as x = {  0 7] }r, 

the second order systems in Eq. (1) is described 

in the state space representation of a linear, time- 

invariant system a~ follows : 

5c(t) =Ax(t )  + Bu(t)  

=[_M_X K _I_ ,D]x( t )  0 +[M_,Flu(t) (2) 

y(t) =Cx(t) 

where x ~ R  n, u E R  m, and y ~ R  ~ are the state, 

control input, and output measurement vectors, 

respectively. A, .B ,  and C are, respectively, con- 

stant matrices of system, input influence, and 

output measurement with appropriate dimension. 

It is assumed that (B, A)  is controllable, (C, A)  

is observable, and B is an n × m matrix with a 

full column rank. In addition, the collocated 

system in which sensors and actuators are placed 

in the same direction and position of the structure 

is assumed, then C = B  r exists in Eq. (2). It is 

well known that non-collocated system becomes 

a non-minimum phased system, which is difficult 

to control, and the collocation of sensors and 

actuators is preferable from the robustness view- 

point as well. 

Then, the system in Eq. (2) can be described 

by using modal decomposition ( A = ~ A g  r as 

follows : 

2( t )  = (¢)Agrr)x(t)  + B u ( t )  (3) 

where A E R  n×n is the diagonal matrix of eigen- 

values, and (1)~R n×n and gr~Rn×n are, respec- 

tively, the right and left modal matrices whose 

columns consist of the right and left eigenvectors 

of A. These eigenvectors can be determined by 

the solution of the standard eigenvalue problem 

(Chen, 1979). If the initial value is assumed to be 

zero, then the output response of system in Eq. 

(3) can be obtained as follows (Kailath, 1980): 

y=C~fot 'eA~t-~{ grrB }u( r )  dr, y(0) = 0  (4) 

In Eq. (4), the matrix term gyrB represents the 

channels from the control input to the system's 

modes, and the matrix Cq) represents the channels 

from the system's modes to the output. These two 

matrix terms are closely related with system's 

controllability and observability, which will be 

carefully discussed in the next section. 

3. Measures  of Modal Controllability 
and Observability in Balanced 

Coordinates 

In this section, the novel measures of modal 

controllability and observability that are defined 

in the balanced coordinate system are presented. 

These measures are more preferable than ones 

defined in the original coordinate system from the 

viewpoint that they are accurate and practically 

useful for the optimal placement of sensors and 

actuators. 

From Eq. (4), it can be easily seen that the 

matrix ~ r B  has an important information about 

the way the control input u( t )  has influence on 

the modes of system and can be described as 

follows : 
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(t( bl .. "" ¢sr b,. ] 

g r T B =  : " ¢'2b~ i (5) 
° ,  

~ bl "" ¢.r bmA 

whose i j - th  entry, inner product of  the i - th  left 

eigenvector and the j - t h  input vector, represents 

the degree of  the i - th  mode's controllabil i ty from 

the j - t h  control input and is described as follows : 

I ~,'.  b> I1=11 ~, II II b~ II cos O., (6) 
i = l ,  2 , . . . , n , j = l ,  2 , . . . , m  

where O;~ denotes the angle between the input 

vector b~ and the left eigenvector ¢ri. In Eq. (6), 

the magnitude of !k;r.b~ can be taken as an 

indication for the modal  controllabil i ty of  the 

i - th  mode from the j - t h  input. 

In addition, the matrix C ~  in Eq. (4) indicates 

how much the individual modes participate in 

each outputs. The matrix C09 and its k i - t h  ele- 

ment can also be described as fol lows:  i cl!n 
C O =  : c k ¢ ~  . 

,. 

ct(~t "'" cl ~J 

(7) 

I c~. #,, I1=11 c~ II II 4,, II cos  a~,, 
i= l ,  2, . . . ,n,k=l ,  2,..., l  

where ~ki denotes the angle between the output 

vector ck and the right eigenvector ~bi. The mag- 

nitude of ch" ~bi can be taken as an indication for 

the modal  observability of the i - th  mode to the 

k - th  output. Then, we investigate the possibility 

that the magnitude of two inner products in Eq. 

(6) and Eq. (7) defined in the balanced coordi- 

nate system can be new measures of modal  con- 
trollabili ty and observability, respectively, and 

the usefulness when they are used as criteria for 

the optimal placement of sensors and actuators. 
From Eq. (6), Hamdan and Nayfeh make 

much of the angle between two vectors, regarding 

that the dependence of [ ~r-b~.[ on cos Oij is 

dominant. By introducing a geometrical interpre- 
tation of the Popov, Belevitch, and Hautus (PBH) 

eigenvector test, they proposed the measures of 

modal controllabili ty and observability as follows 

(Hamdan and Nayfeh, 1989a): 

I ~ . b > l  
~ , j=  cos  0;>-II  ~, II II b> II 

,,,,,= cos ,~,,,- I c,,. ,~; I 
II c~ II II ~, II 

(8) 

They concentrate on the fact that cos O~j and 

cos c~ki is dominant in I ~T'b~l  and ]ch'qbi 1, 
respectively, when both angles 0ij and 9ki are 

either right angles or very near to it. In addition, 

Choi, et al. proposed a new version of Eq. (8) by 

considering the norms of input vector bj and 

output vector ck into the above measures as 

follows (Choi et al., 1995): 

~o = II bj II cos  0 , j -  I ¢~T" b~ I 
II ~, II 

,-~,=11 c~ II cos  ~ ; -  I c~-~,, I 
II ~; II 

(9) 

It is obvious that these measures are all attrac- 

tive in that they can represent the system's modal  

controllabili ty and observability explicitly. How- 

ever, there remains two problems in applying 

these measures as criteria for the optimal place- 

ment of sensors and actuators in control of  large 
flexible structure. 

First is that the norms of the eigenvectors, 

although they are arbitrarily scaled, are not con- 

sidered in these measures and only the directions 

of eigenvectors are considered. For  further exam- 

ination, the relationship between the gross mea- 

sure of  modal control labi l i ty/observabil i ty  and 

the residue matrix is investigated. Hamdan and 

Nayfeh suggest the gross measures of  modal  

controllabil i ty and ohservability of a given mode, 

which represent a projected magnitude of each 
eigenvectors into the input and output spaces. 

Here, the i - th  gross measures of  modal  controlla- 

bility (o'i) and observability (coi) are defined, 
respectively, as follows (Hamdan and Nayfeh, 

1989a) : 

~,= II f~ fl, 
f~= ~, 'B 

II ~; II 
=[ll b, II cos 0,111 ~ II cos 0i2 "" II b.  II cos O,m] 

(lO) 
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0~,=11 h, II, 

C~, ( l l )  
h,= II ~, II 

=Ell c, II cos ~1, II c2 II cos ~2i ... II eL II cos ~,,3 ~ 

Then, the transfer function G(s) = C ( s I - A )  -~ 

B of Eq. (2) can be expanded as follows : 

G (s) ---- ~'~ Ri 
t=1 S--Ai (12) 

where the residue matrix Ri is 

Ri= C•i¢'rB, i =  1, 2, "-, n (13)  

The residue matrix R~(i=l, 2, ---, n) is related 
to some properties of the state space and frequen- 

cy-response representation, and invariant under 

any coordinate transformation. From Eq. (13), 

by taking norms on both sides, the relationship 

between the norm of residue matrix and the gross 

measure of controllability/observability can be 

described as follows (Hamdan and Nayfeh, 

1989a ; Linder et al., 1989) : 

II R, I1=11 ¢i II II ¢~i II II hi II II f i  II, i =  1, 2, ..., n (14) 

In Eq. (14), it can be seen that the norm of 

Ri, which indicates the contribution of the i - th  
mode to the system's entire input-output rela- 

tions, depends on the joint gross measure of 

modal controllability and observability (11 h, II 
II fi II). Note that there exists a difference between 

the norm of the residue matrix Ri and the joint  

gross measures of modal controllability and 

observability, which corresponds to I1 ¢i  II II ¢~i II. 
Besides, II ¢i II II ~i II has some values that are 

greater than unity if the i- th mode is not perfectly 

well-conditioned. Hence, for accurate measures, it 

is desirable to include the norms of the left and 

right eigenvectors, then the residue matrix Ri is 

exactly identical with the joint gross measures of 

modal controllability and observability. How- 

ever, it is difficult to explicitly decide the norms of 

the left and right eigenvectors, respectively, due to 

their inherent arbitrary scaling. 

Second problem is that, if actuators and sensors 

are collocated, the selected locations that are the 

most controllable for actuators do not always 

guarantee the most observable ones for sensors. 

Such an undesirable location set can not improve 

the control efficiency, hence the equally con- 

trollable and observable locations are more pre- 

ferable. However, by using the measures of Ham- 

dan and Nayfeh, it is difficult or complicated to 

achieve the equally controllable and observable 

location set of sensors and actuators. 

From these two considerations, our attention is 

paid to a coordinate transformation such that the 

measures of modal controllability and observa- 

bility become equal and the norms of the left and 

right eigenvectors are identical for a certain 

mode; this unique set of coordinates is called 

internally balanced. For the purpose of model 

reduction, Moore (1981) introduced an internally 

balanced system by using the singular values to 

define the measures of nearness to rank deficiency 

of the controllability and observability gram- 

mians. 

Let us transform the original system in Eq. (2) 

into a balanced coordinate system, which has a 

parity symmetric matrix .~ as follows (Moore, 

1981): 

~.(t) = A z ( t ) + B u ( t )  
y ( t )  = C z ( t )  (15) 

In Eq. (15), there exists an interesting symmetric 

property of eigenvectors as follows: 

~ i = E ~ ,  (16) 

where E is a diagonal matrix with entries --1. 

Using the Eq. (16), Hamdan and Nayfeh show 

that the following relationship between the 

measures of modal controllability and observa- 

bility exists in the balanced coordinate system 

(Hamdan and Nayfeh, 1989b): 

II (~-TB) ~ I1=11 C~ i  II (17) 

which means that balancing makes the modes 

equally controllable and observable. Actually, 

every direction in the state space is equally 

controllable and observable. Hence, we proposed 

the two inner products in Eq. (6) and Eq. (7) as 

new measures of modal controllability and ob- 

servability when they are defined in the balanced 

coordinate system of Eq. (15) as follows: 
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f f ,~: l  ~-T'g I:11 ~-, II II g II cos ~-,~, 
i = l ,  2, -..n, j = l ,  2, ..., m 

.~ ,=1 & '¢ - ,  I--ll ~ II II ¢; II cos ~L-, 
i = l ,  2, -..n, k = l ,  2 , . . . ,  l 

(18) 

where always exists ~j=/~k~.  Based on these 

measures, the selection method for the optimal 

number and location of  sensors and actuators is 

developed in the next section. 

4. Optimal Placement of Sensors and 
Actuators 

In this and next sections, the optimal placement 

of sensors and actuators which employs the mea- 

sures of modal controllability and observability 

in balanced coordinates in Eq. (18) as its criteri- 

on is presented. In addition, for a simple and clear 

method, the additional measures are introduced 

in this section. 

In general, the determination of the optimal 

number and locations of sensors and actuators 

results in the complex optimization problems 

such as integer programming, linear program- 

ming, and non-linear programming (Maghami 

and Joshi, 1993). As the number of  possible com- 

binations for optimal locations of  sensors and 

actuators increases, an exhaustive search for a 

global optimum is computationally infeasible and 

gradient based techniques typically produce local 

minima. For large flexible structures having a 

large number of sensors and actuators, the opti- 

mization procedure will become even more com- 

plicated, with much more increased local minima. 

Hence, the development of  a systematic and com- 

putationally feasible search strategy to actually 

solve for the optimal set of  sensors and actuators 

is still required in this problem. 

From here, we examine the optimal placement 

method for actuators only, because sensors can be 

placed in the same procedure when the measures 

in balanced coordinates are used as its criterion as 

mentioned previously. This means that once the 

most controllable location set of  actuators is 

selected, then the equally observable location set 

of sensors can be achieved automatically in the 

collocated system. 

First, note that the measure matrix ~ r / ~  can be 

written as follows: 

i • (19) / 

where each entries represent the i j - t h  measure of 

modal controllability of  the i - th  mode from the 

j - t h  actuator's input as defined in Eq. (18). 

However, when the problem of optimal placement 

of actuators is considered, it is difficult to draw 

any explicit indication about the variation of the 

entire system's controllability according to the 

possible candidate set of  actuator locations from 

these measures themselves. Hence, the additional 

measures are introduced to derive the more evi- 

dent indication about how the controllability of 

the entire system varies with respect to the number 

and locations of  actuators. 

In Eq. (19), the norm of the i - th  row vector 

indicates the degree of the i - th  mode's con- 

trollability from all inputs that is induced by a 

specified set (number and locations) of actuators, 

and is defined as follows : 

(20) 
i=1, 2, ..., n 

where 0"~ represents the / - th  mode's gross mea- 

sure of  modal controllability. ~ can be physically 

interpreted as representing the power injected by 

all actuators into the i- th mode and the relative 

degree of the i - th  mode's contribution in the 

system's entire input-output relations as well. 

Hence, the gross measures of  modal controlla- 

bility of each modes are given as follows: 

F=[ ,~,  & ... ,~, ]~=[ l l f ,  ll IIf~ll "-. I I f ,  ll] T (21) 

From Eqs. (20) and (21), a measure that re- 

presents the total degree of  controllability of the 

entire system can be defined as follows : 

- -  n 

~--II F I I --~. ,~, (22) 
/=1 

where /9 gives us a direct indication for the selec- 

tion of the appropriate number of actuators and 

can be used as an important index for the optimal 

placement method. 
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Next, the other additional measure that gives a 

direct indication for the selection of actuator 

locations is examined. When we consider the 

norm of the j - t h  column vector in Eq. (19), it 

can be seen that this norm represents the j - t h  

actuator's contribution to the controllability of all 

modes, and is defined as follows: 

~=llq~ll ,#~=~%=-E~ ¢Y~ ~.%]L (23) 
j = l ,  2, ..., m 

where ~ represents the gross measure of input 

controllability that indicates the degree of con- 

trollability of all n modes with respect to the j - t h  

actuator. Then, for the whole set of actuator 

locations, the following vector that consists of the 

measure ~-~ can be obtained : 

0 = ~& ~-, " ~-.] = Ill #~ II II 4.  II ' II ~ .  Ill (24) 

In vector l~, the largest entry indicates by the 

entry's position itself that the corresponding 

actuator location is the most controllable one in 

the whole set of locations. 

By using the additional measures in Eqs. (20), 

(22) and (23) that are all derived from the novel 

measures of modal controllability in balanced 

coordinates, the optimal number and locations of 

actuators can be determined in the simple and 

evident manner. Then, the optimal number and 

locations of sensors are the same as those of 

actuators by the helpful properties of balanced 

coordinate system as examined in the previous 

section. The detailed calculation procedures are 

presented in the next section through a numerical 

example. 

5. A Numerical  Example 

In numerical experiments, the proposed method 

for the optimal placement of sensors and actua- 

tors is applied to a simply supported flexible 

beam that is modeled to have six vibration modes. 

As illustrated in Fig. 1, a flexible beam model in 

which lumped unit masses are placed at uniformly 

distributed six nodes and both damping and 

stiffness effects are presented by continuous beam 

structure is used. In simulations, the beam has the 

length(L) of 1 m and the bending stiffness(E/) 

~t U~ et~ U4 ~5 ~o 

l L L L L Z L L 

Fig. 1 A simply supported beam model 

' l[ ' IillllilliIltItttitliJl1,t!li!il!lil0t'ftl  i',iltl! 
-o | J 

t 

Fig. 2 Response of the open-loop system 

of 0.001 N/m, and also the proportional dam- 

ping D=0.001M+0.001 K is assumed. By first 

assuming that six independent actuators are plac- 

ed at each nodes, the state space representation of 

the flexible beam model under consideration is 

described in Appendix A.I. Then, the eigenvalues 

of the open=loop beam are as follows: 

Aope.= { -0.0682_+11.6332i -0.0399-+8.8776/ -0.0178 +5.8829i l 
-0.0061_+3.3458i -0.0016+1.4913i -0.0006+0.3730i) 

It is obvious from the open-loop response 

depicted in Fig. 2 that the beam model has the 

characteristic of a flexible structure. 

From now on, to evaluate the effectiveness of 

the proposed measures, two cases of the optimal 

placement of actuators are carried out on the 

previous flexible beam model and compared each 

other: One uses the measures proposed in this 

study as its criteria, and the other uses the mea- 

sures proposed by Hamdan and Nayfeh (1989a). 

After the locations of actuators for two cases are 

determined, their closed-loop responses are com- 

pared to investigate which location set is more 

controllable than the other. 

First, as for the case of the proposed measures, 

the measure matrix ~ r / ~  in Eq. (19) and the 

additional measures in Section 4 are obtained in 

Appendix A.2. In Appendix A.2, each entry of 
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vector i f ,  which is composed of  the norm of  each 

row vectors o f  ~ffr/~, represents the gross measure 

of  modal  control labi l i ty  of  a corresponding mode 

as in Eq. (20). In addit ion,  each entry of  vector 

~), which is composed of  the norm of  each 

co lumn vectors of  ~ffrB, represents the gross 

measure of  input control labi l i ty  as in Eq. (23). 

Then, this vector gives an indicat ion about  which 

actuator 's  locat ion has the largest influence on the 

whole modes and can be used as a direct index for 

the selection o f  actuator  locations. It is readily 

seen that the 2nd and 5th actuator  locat ions( the  

under - l ined  entries) represent the most control l -  

able ones among six candidate  locations.  Final ly,  

t5 is the norm of  vector f f  representing the 

measure of  total  control labi l i ty  of  all modes with 

respect to the current  configurat ion set o f  six 

actuators and can be used for the selection of  

number  of  actuators. 

Here, all the possible candidate configurat ions 

of  actuator  locations according to its number  are 

summarized in Table  1, which gives the explicit  

indicat ion about  how to select the opt imal  num- 

ber and locations of  actuators. In Table  1, the 

most control lable  locat ion set for the correspond-  

ing n u m b e r ( m )  is determined by examining the 

elements o f  vector Q, and then the measure of  

total controllabil i ty(t3) for each configurat ions 

(number  and locations) set is calculated from Eq. 

(22). F r o m  this, for the selection o f  the number  of  

actuators, there has to be a compromise  between 

the control  efficiency and economica l  aspects by 

taking into account of  the improvement  of  the 

measure of  total control labi l i ty  (t3m--t3m-x). In 

this example, we can easily select the 2nd config- 

urat ion set in Table  1 in which two actuators are 

located at the 2nd and 5th nodes, because the 

improvement  of  t3 is remarkably  large in this 

conf igurat ion set as seen from P2--Pl.  Note that 

the same number  and locat ion set for sensors can 

be automat ical ly  achieved to be the most 

observable ones by the help of  new measures in 

balanced coordinates.  However ,  a complex search 

algori thm is still needed when the larger number  

o f  actuators and the more complicated configura-  

tion set are involved. 

Next, to determine the actuator 's  locat ion set 

for the case of  the Hamdan  and Nayfeh 's  

measures, ~ r B  in the or iginal  system is presented 

in Appendix  A.3 obtained by using the measure 

of  modal  control labi l i ty  in Eq. (8). F r o m  the 

vector Q in Appendix  A.3, the two actuator  

locations, the 3rd and 4th nodes, can be selected 

for the most control lable  ones. However ,  the most 

observable locations for two sensors, the 1st and 

6th nodes, are not coincided with those of  

actuators as can be seen from Appendix  A.4, 

where the vectors P and G, respectively, corre- 

spond to the vectors Q and F in the case of  

control labi l i ty  measures in Appendix  A.3. That  

is, if the sensors are col located with the actuators, 

then the most observable locations for sensors can 

not be achieved. 

F rom here, the c losed- loop  responses for the 

previously described two cases of  actuator loca- 

t ion set are compared  to investigate which loca- 

tion set is more control lable.  Fo r  the vibrat ion 

suppression of  the flexible beam, a state feedback 

control  using the left eigenstructure assignment 

(Choi  et al., 1995) is applied. Let the desired 

eigenvalues of  the c losed- loop  system be assigned 

as fol lows : 

Acted=[-1.0 -1.1 -1.3 -1.4 -1.7 -2.0 -2.1 -2.3 -2.5 -2.6 -2.8 -4.01 

Then, the control  gain matrix and its norm can be 

obtained in both cases as fo l lows:  

C A S E  1 : Actuator  locations at nodes 2 and 5 
( I--0.0145 0.0538 -9.8216 22.0453 -30.6325 -108.8997 -0.1411 0.0316 -0.2769 6.1775 10.9546 19.17081 

=~-0.0145-0.0538 -9.8216-22.0453 -30.6325 108.8997-0.1411-0.0316 -0.2769 -6.1775 10.9546-19.1708/ 

II K II,r0= 166.7677 

Table 1 Candidate configurations(number and locations) of actuators 

number (m) 1 2 

location(node) 2 or 5 2, 5 

22.4303 37.7212 

Pro-- pro-1 15.2907 

3 4 5 6 

1 , 2 , 5 o r 2 , 5 , 6  1 , 2 , 5 , 6  1 , 2 , 3 , 5 , 6 o r  1 , 2 , 4 , 5 , 6  1 , 2 , 3 , 4 , 5 , 6  

38.5983 44.4229 49.1209 53.4072 

0.8771 5.8296 4.6980 4.2863 
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Fig. 4 Responses of the states and control inputs for CASE 2 (nodes 3 and 4) 

C A S E  2:  Actua tor  locations at nodes 3 and 4 

r-0.0116 0.1208 5.4506 12.2342 68.8305 87.3308 -0.1132 0.0711 0.1537 3.4282 -24.6148 -15.3738] 

K=L-0.0116 -0.1208 5.4506 -12.2342 68.8305 -87.3308 -0.1132 -0.0711 0.1537 -3.4282 -24.6148 15.3738J 

II K I1,,0 = 163.6932 

where II°ll,ro represents the Froben ious  norm of  

[ . ] .  Note  that these two cases are compared  in 

the condi t ions  o f  the same c losed- loop  eigen- 

values and the nearly same norm of control  gan 

matrices. 

Then, the initial value responses of  the c losed-  

loop system and their control  input history for 

both cases can be obtained as shown in Figs. 3 

and 4. In Fig. 3, it is shown that the vibrat ion 

suppression in C A S E  1 is well performed but 

needs more convergence t ime than C A S E  2. 

However ,  in contrast  to C A S E  1, C A S E  2 un- 

dergoes more oscillated transi t ion to fast conver-  

gence and needs more control  energy than C A S E  

1 as seen from Fig. 4. F r o m  these results, it can be 

said that C A S E  1 requires much less control  

energy than C A S E  2 to achieve the nearly same 

control  performance of  vibrat ion suppression. 

That  is, the actuator locat ion set in C A S E  1 

(nodes 2 and 5), which is selected by using the 

proposed measures as criteria, is shown to be 

more contro l lable  than that of  C A S E  2 (nodes 3 

and 4) that is selected by using the measures o f  

Hamdan  and Nayfeh. 
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6. Conclusions 

This paper presents new measures of  modal 

controllability and observability defined in the 

balanced coordinate system, which are more ac- 

curate and practically useful than the convention- 

al measures of  Hamdan and Nayfeh. By using 

these measures, we can obtain the optimal loca- 

tion set of sensors and actuators which equally 

maximizes controllability and observability of a 

system and need not take any pain in considering 

the norms of eigenvectors into the measures, 

because a balanced coordinate system has equally 

controllable and observable modes and the left 

and right eigenvectors of a certain mode have the 

same magnitude of norms. In addition, by the 

help of the additional measures, more simple and 

explicit optimal placement method is presented. 

The effectiveness of the proposed measures and 

optimal placement method to improve the control 

efficiency for the control system of large flexible 

structures has been verified by numerical simula- 

tions. 

Appendix 

A.1 The state space model of  a flexible beam 

:c(t) = A x ( t )  + B u ( t )  

[016x6 
-33.8782 32.6127 -14.2526 3.8177 -1.0180 0.2545 

32.6127 -48.1308 36.4303 -15.2706 4.0722 -1.0180 

= -14.2526 36.4303 -49.1488 36.6849 -15.2706 3.8177 

3.8177 -15.2706 36.6849 -49.1488 36.4303 -14.2526 

-1.0180 4.0722 -15.2706 36.4303 -48.1308 32.6127 

0.2545 -1.0180 3.8177 -14.2526 32.6127 -33.8782 

y ( t )  = C x ( t )  = B r x ( t )  

-0.0349 0.0326 -0.0143 0.0038 -0.0010 0.0003 

0.0326 -0.0491 0.0364 -0.0153 0.0041 -0.0010 

-0.0143 0.0364 -0.0501 0.0367 -0.0153 0.0038 

0.0038 -0.0153 0.0367 -0.0501 0.0364 -0.0143 

-0.0010 0.0041 -0.0153 0.0364 -0.0491 0.0326 

0.0003 -0.0010 0.0038 -0.0143 0.0326 -0.0349 

x(t) 

A.2 The proposed controllability measures  

18.0958 

18.0958 

9.2374 

9.2374 

10.5466 

10.5466 

12.8534 

12.8534 

16.5641 

16.5641 

21.5072 

21.5072 

~=53.4072 

4.1968 7.5624 

4.1968 7.5624 

2.1423 3.8604 

2.1423 3.8604 

4.4075 5.4961 

4.4075 5.4961 

6.6982 2.9810 

6.6982 2.9810 

8.6319 3.8416 

8.6319 3.8416 

8.9880 11.2079 

9.4301 9.4301 7.5624 4.1968- 

9.4301 9.4301 7.5624 4.1968 

4.8138 4.8138 3.8604 2.1423 

4.8138 4.8138 3.8604 2.1423 

2.4460 2.4460 5.4961 4.4075 

2.4460 2.4460 5.4961 4.4075 

5.3715 5.3715 2.9810 6.6982 

5.3715 5.3715 2.9810 6.6982 

6.9223 6.9223 3.8416 8.6319 

6.9223 6.9223 3.8416 8.6319 

4.9880 4.9880 11.2079 8.9880 

11.2079 8.9880 

22.4303 21.9904" 

8.9880 11.2079 4.9880 4.9880 

Q=[21.9904 22.4303 20.9635 20.9635 
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A.3 The controllability 
0.9369 

0.9369 

0.0856 

0.0856 

0.1119 

0.1119 
F =  

0.1676 

0.1676 

0.2864 

0.2864 

0.5569 

0.5569 

measures of Hamdan and Nayfeh 
-0.2173 0.3916 0.4883 

~" r B _-- 

0.4883 0.3916 0.2173 

0.2173 0.3916 0.4883 0.4883 0.3916 0.2173 

0.0199 0.0358 0.0446 0.0446 0.0358 0.0199 

0.0199 0.0358 0.0446 0.0446 0.0358 0.0199 

0.0468 0.0583 0.0260 0.0260 0.0583 0.0468 

0.0468 0.0583 0.0260 0.0260 0.0583 0.0468 

0.0873 0.0389 0.0700 0.0700 0.0389 0.0873 

0.0873 0.0389 0.0700 0.0700 0.0389 0.0873 

0.1492 0.0664 0.1197 0.1197 0,0664 0,1492 

0.1492 0.0664 0.1197 0.1197 0.0664 0.1492 

0.2327 0.2902 0.1292 0.1292 0.2902 0,2327 

0.2327 0.2902 0.1292 0,1292 0.2902 0.2327 

O=[0.5174 0.7045 0.7443 0.7443 0.7045 0.5174] 

A.4 

p =  

The observability measures of Hamdan and Nayfeh 

-1.3162 -0.0811 0.0811 0.2311 0.2311 0.4153 0.4153 0.5138 0.5138 0.4993 0.4993 0.3471 0.3471 

1.2263 

1.2025 

1.2025 

1.2263 

1.3162 

C ~ =  

0.1461 0.1461 0.4164 0.4164 0.5178 

0.1821 0.1821 0.5192 0.5192 0.2305 

0.1821 0.1821 0.5192 0.5192 0.2305 

0.1461 0.1461 0.4164 0.4164 0.5178 

0.0811 0.0811 0.2311 0.2311 0.4153 

G=[0.3495 0.3495 0.9963 0.9963 0.9937 0.9937 

0.5178 0.2286 0.2286 0.2222 0.2222 0.4328 0.4328 

0.2305 0.4120 0.4120 0.4004 0.4004 0.1926 0.1926 

0.2305 0.4120 0.4120 0.4004 0.4004 0.1926 0.1926 

0.5178 0.2286 0.2286 0.2222 0.2222 0.4328 0.4328 

0.4153 0.5138 0.5138 0.4993 0.4993 0.3471 0.3471 

0.9859 0.9859 0.9581 0.9581 0.8306 0.8306] 
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